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“WINO DARK MATTER 
UNDER SIEGE”*

• WIMP Miracle: 

• TeV-scale particle 

• Electroweak-strength 
coupling 

• Right relic abundance of 
dark matter from thermal 
freezeout

• SUSY gives such a WIMP
*1307.4082: Cohen, Lisanti, Pierce, and Slatyer ; see also “In Wino Veritas”, 1307.4400: Fan & Reece

From 1307.4082:  
Blue line: Wino annihilation rate
Blue shade: Exclusion from HESS

Yellow shade: All DM is thermal wino
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Ruled 
out 

by 15x



FORTRESS WINO?
• Exclusion computed for LO

+Sommerfeld Enhancement
(SE)

• Maybe the wino saves itself 
at higher orders?

• If DM halo cored out to 1 
(10) kpc, can reduce 
annihilation rate by 4x (15x)

• Exclusion assumed cusped, 
NFW profile
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From 1307.4082
Blue: LO+SE

Green: NLO+SE (reduction by 4x?)
Dots: NLO only

Do we believe such a large, 
subleading effect?



WHY WINO DARK MATTER?
• Higgs + nothing else means?

• SUSY to eliminate most fine-tuning? 10-8 
instead of 10-32  

• Higgs mass and flavor physics point to 
sfermions at 100-1000 TeV

• Simpler SUSY model building (Gravity
+Anomaly mediation)

• Gauginos (w/ wino LSP) at right scale for 
WIMP Miracle

• Binos overclose universe, Higgsinos poorly 
constrained byt possible 
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From 1403.6118: MB, Stolarski, and Zorawski
Mini-split SUSY allows a radiative generation

of flavor hierarchies 
and allows for thermal WIMP-DM

Mini-split SUSY: 1112.2462: Ibe & Yanagida, 1210.0555: Arvanitaki et al., 
1210.2395: Hall, Nomura, & Shirai, 1212.6971: Arkani-Hamed et al. Also see Altmannshofer et al. 1409.2522 for radiative flavor



WINOS & BEYOND

• We want to understand higher order effects in wino annihilation

• Electroweak physics contains large, double-logarithms

• Resum them using Soft-Collinear Effective Theory (SCET)

• Treat slow (v~10-3), heavy DM nonrelativistically and compute 
Sommerfeld Enhancement with numerical Schrodinger Equation

• Results will be generic for any electroweak DM with M~1-10 TeV
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SUDAKOV LOGARITHMS
• Emission of soft or collinear radiation can lead to infrared divergences

• Performing integrals gives us Sudakov double logarithm

• For wino annihilation at the thermal mass (3 TeV), 
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BLOCH-NORDSIECK 
THEOREM VIOLATION*

• Electroweak physics has infrared divergences, even in fully inclusive observables

• We sum over degenerate final states, but not initial 

• We avoid pathology because

• QED: Abelian lets us commute UI and cancel with final sum

• QCD: Singlets let us average over initial colors

• Electroweak: Gauge boson masses cut off divergence, but allow for log(Q2/mW2)2
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SOFT-COLLINEAR EFFECTIVE 
THEORY

• SCET converts kinematic 
logarithms into anomalous 
dimensions

• We can use RG to resum 
them

• Originally developed for B-
decays and jet physics, but 
extension to electroweak is 
trivial
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For process of interest, split fields into 
relevant modes and expand around appropriate

kinematic limit



MODES & FACTORIZATION
• Large logs → disparate scales (λ~mW/Mwimp) → factorization

• Factorization lets us separate 2 nontrivial behaviors 
(Sommerfeld and Sudakov)

• Setting up EFT requires list of relevant modes
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WIMPs (χ) : (E ∼ λ2, p ∼ λ)

Potential : (E ∼ λ2, p ∼ λ)

Collinear (Bµ⊥) : (k+ ∼ 1, k− ∼ λ2, k⊥ ∼ λ)

Soft (Sab) : (k+ ∼ λ, k− ∼ λ, k⊥ ∼ λ)



WHAT TO COMPUTE?

• Our interest is in setting 
limits from indirect detection

• HESS is an air Cherenkov 
telescope that observes 
photons colliding with the 
atmosphere

• Therefore, we compute 
χχ→γ+X
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From HESS collaboration 1301.1173
at 3 TeV, energy resolution is 400 GeV



OPERATOR BASIS
• Since our interest is semi-inclusive processes, it is useful to 

work with the OPE

• At tree level with one-loop running, we generate:
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WILSON LINES, GAUGE 
INVARIANCE, SOFTS

• SCET has rich gauge structure (separate for soft and collinear sectors) and 
collinear fields contain implicit collinear Wilson lines

• We have soft Wilson lines for both WIMP and collinear fields

• Soft&Collinear-gauge-boson structure is therefore 
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s = 1 δÃB̃δA�B�

O
a
c = B

⊥
Ã
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ANOMALOUS DIMENSIONS

• Compute soft & collinear 
anomalous dimensions 
separately

• OPE converted amplitude-
squared to operator whose 
expectation value gives rate

• Thus, real & virtual 
corrections to χχ→γ+Χ will 
appear as loops 
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Above:  Collinear contributions (real & virtual)
Below: Interactions between 

soft Wilson lines (solid - timelike; dashed - lightlike)



RAPIDITY RG

• SCET is a “modal” theory

• We thus get divergences 
when integrals invade other 
sectors

• Regulating sets up RG for 
resumming these rapidity logs
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ν-running lets us minimize log between
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ANOMALOUS DIMENSION 
RESULTS

• For the collinear and soft sectors of our operators, (a - 
nonsinglet and b - singlet)

• We get the following RG equation (2,4 - nonsinglet and 1,3 - 
singlet)
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WILSON COEFFICIENTS

• We have four operators, but controlled by one tree-level 
matching coefficient

• Just two dimension-five operators in “square root” of OPE, 
χχBnBn and χCχD BnCBnD and 

• Their coefficients equal and opposite to cancel, e.g. 
χ3χ3→W3W3

• Squaring in OPE leads trivial color contraction, giving
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C1 ≡ C C2 = −2C

C3 = 0 C4 = C



TOTAL RATE

• The ψ-factors quantify short-distance annihilation 

• The s-factors quantify overlap between annihilating and asymptotic states 
(Sommerfeld), and we will calculate them by numerical Schrodinger solutions

• The f-factors arise from running Wilson coefficients and resum Sudakov 
double-logs
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RESUMMATION
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Sudakov factor vs. Dark Matter mass
Resummation is modest ~5% affect for thermal Wino (3 TeV)

f+ term dominates
so this quantifies 

higher order 
corrections



NONPERTURBATIVE EFFECTS
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• So far we have focused on 
loops involving final-state 
bosons

• W-exchanges flip between χ0χ0 
and χ+χ- states

• Subsequent ladder exchanges 
unsuppressed

σone−loopv =
4πα2α2

W

m2
W

An � α

�
α2M

mW

�n From Hisano et al. hep-ph/0412403



SOMMERFELD 
ENHANCEMENT*

• Slowly-moving objects in a potential can have much larger cross 
section than perturbative treatment suggests

• In nonrelativistic regime, summing infinite ladder exchange equivalent 
to solving Schrodinger equation for appropriate potential

• Annihilation rate becomes 

• s given by ψ(∞) /ψ(0) for boundary conditions ψ(0) = 1, ψ’(∞) = i 
k ψ(∞)
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*Hisano et al.: hep-ph/0412403, Arkani-Hamed et al.: 0810.0713, Slatyer : 0910.5713 

σv = |s|2Γ



ELECTROWEAK POTENTIAL*

• Potential accounts for Yukawa exchange of Ws, Zs, Coulomb 
exchange of γs, and χ+ - χ0 mass splitting = (0.17 GeV)

• Between the two-body 1S0 states 
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We follow Hisano et al.: hep-ph/0412403 and Cohen et al 1307.4082
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WINO SOMMERFELD 
FACTORS
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Solving Schrodinger equation for v = 10-3 gives us resonance regions with O(104) enhancement

Thermal
3 TeV 
value



TOTAL RATE & EXCLUSION
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Exclusion curve taken from Ovanesyan, Slatyer, and Stewart (1409.8294); HESS data with NFW profile



COMMENTS & CONCLUSION
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• Viability of thermal wino dark matter requires vastly different profile than that 
preferred by simulation community (core ~ 10 kpc)

• When computing observationally relevant semi-inclusive rate, NLO effects are 
small (~10%) compared to ~50% found in exclusive analyses: Ovanesyan, 
Slatyer, and Stewart (1409.8294); Bauer et al. (1409.7392)

• Accounting for real-emission leads to LL operator mixing and Wilson 
coefficients with structure 1+Exp[-Log2]. Exclusive calculation has no mixing 
and therefore gets simply Exp[-Log2]

• Resumming inclusive electroweak double logs at hadron colliders where 
resummation could be important for precision (LHC) or crucial (100 TeV)


